

APD Noise on the Far Detector

R.J. Tesarek 7/16/13

The Problem

What we've seen

- ~I di-block (768) APDs installed before 5/20 have initial and continued performance good
- ~I di-block (768) APDs installed after 5/20 following same installation and checkout procedures show:
 - Pass QA tests prior to installation
 - Higher hit rates (noise) at the nominal bias voltage
 - Higher readout threshold
 - Larger and increasing data rates
- "Training" APDs with high hit rates appears to help (not understood)
- APD "training":
 - I. Start with lower bias voltage (300V)
 - 2. Hold until data rates stabilize
 - 3. Raise bias voltage 25V and repeat 2. above until nominal bias voltage achieved
- →We do not understand the need for training some of the APDs, what changed to cause this or the long term effects

Nominal APD Conditions:

- Water cooled (T ~60F)
- Supply voltage 425V regulated down to 350V (APD bias voltage)
- Dew point in dry gas branches < -30C
- Readout thresholds 50-60 ADC counts
- Parylene coating thickness 0.0004" 0.0006"

Pixel Readout Thresholds

Pixel Thresholds 2013-06-28_12_01_15

DSOThresholdsDET_dd: 2013-06-28_12_01_15_hists.root Fri Jun 28 18:53:51 2013 (UTC) Note: each black box represents 64 APDs (2048 channels)

Noise Example

Note: Each green box above represents 64 APDs installed (2048 detector channels)

Increasing Data Size CPU Saturation

Evidence that training works

FEBs installed

FEBs & APDs installed

What We Know So Far

Held meeting on 6/11 to discuss strategy/avenues to explore to understand the issue (experts only)

Additional meeting held 7/10 including experts spokespersons, PPD, directorate

What we've learned, improved/ruled out

- Installation at Ash River "unchanged". Handling/testing procedures tightened.
- No position or installer dependence
- Noise not from FEBs (see slide 4)
- Mechanical tolerances unlikely (QA at Ash River/ observations of removed devices)
- Reduced susceptibility of QA equipment to humidity at Ash River
- Short term tests at CalTech/Ash River do not show problems (tests last minutes)
- Noise shows up only after biased for some time (hrs)

Test Parts from Ash River

- Failed QA (heat sink seal, bad hoses)
- Noisiest parts removed from far detector

APD Tests at CalTech

Monitor bias current for longer periods than typical QA tests.

NOTE: Vertical scale changes from plot to plot

Random APDs from Ash River (2 hr test)

TEC deaC 8 Pixel Amps 8 TEC degC 9 Pixel Amps 9 TEC degC 10 24.59 25.40 25.38 126E-12 173E-12 679E-12 4.0E-9 -210E-12-Marginal Current (A) Good 3.5E-9-16E-9 -14E-9 -12E-9 -8.0E-9 1.5E-9 6.0E-9-1.0E-9 -4.0E-9 -110E-12 500E-12

00:00 00:30 01:00 01:30 01:59

Time (hh:mm) Time (hh:mm)

Uncoated Hamamatsu APDs (12 hr test)

Noisy APDs removed from detector (2 hr test)

Batch 10 Parylene Coated Parts (12 hr test)

Time (hh:mm)

Conclusions to Date

Qualitatively reproduce the observations on the far detector:

- Short term (QA) tests show no problem
- Problem manifests after some time
- Time on bias voltage decreases current (training)

Additional observations:

- Recently coated (batch 10) show similar problem features to that seen in noisy APDs from the detector
- APDs sitting on shelf at Advanced Coatings behave as new APDs from Hamamatsu
- APDs baked by Advanced Coatings behave as new APDs from Hamamatsu
- Evidence that power cycling a trained APD does not return that APD to a noisy state

Plans

- Additional bench tests at CalTech
- Develop sharper tools to measure pixel rates (Indiana, Minnesota)
- Add P.Rubinov, A.Rhonzhin, (FNAL/PPD) to help perform tests at FNAL
- Install parts on near detector test stand to understand performance of cold APDs
- Work with coater to better understand processing
- B.Flaugher, P.Rubinov, TJ.Sarlina to visit CalTech/Advanced coatings to review APD processing
- Operate APDs with nominal gain (100) and cold (-15C) and monitor performance

Back Up Slides

Fingerprints Observed at A.R.

Gloves required for all APD handling at CalTech/Ash River

APD Mechanical Tolerances

12

Note: ~4% of the optical connectors are measured at Ash River. All are within tolerance (data in NOvA-doc-7469)

APD Back-off from Optical Bosses

-Carrier Board thickness: 0.0622" +/- 0.0021"

(NOVA-DOC-6412, NDOS)

-Parylene Coating: 0.00045" +/- 0.00007"

(Email from Leon)

-Glue: 0.0032" +/- 0.0024"

(NOVA-DOC-6412, NDOS)

-Built-in "Shim": 0.0059" +/- 0.00197"/0"

(NOVA-DOC-6346)

-PCB back to APD (Gold Bump): ~0.00335" +/- ??(0.00004)

(NOVA-DOC-6474)

Optical boss to coating surface (OBCS) = Shim + Bump - Glue - 2*coating

(Note: The glue shouldn't add to the calculation if contained to glue channel)

OBCS Value with no glue: 0.00825" +/- 0.002"/0.0002"

OBCS Value with glue: 0.0052" +/- 0.003"/0.0024"

Conclusion: If the parts are in spec, mechanical interference is highly unlikely. (Do we have recent measurements of the part dimensions?)

Uncoated Parts from Coater

Sample of 1st 14 look perfect in 8 hr test Instrumentation problem in 3rd plot top row Performance similar to Hamamatsu uncoated parts

Uncoated Parts from Early Coating Batches

All show high early currents that decay away Several > IuA, several > I00nA

Power Cycle Tests

Test parts over 8 hrs.

Power down for several hours

Re-test for 2 hrs

